CSIR-Central Leather Research Institute
Dr.S. Thennarasu
Sr. Principal Scientist
Academic Qualifications
    Ph.D (University of Madras)
Contact Details
Dr.S. Thennarasu
Sr. Principal Scientist
Head
Organic & Bio-organic Chemistry
CSIR-Central Leather Research Institute
Adyar, Chennai – 600 020
e-mail: thennarasu@clri.res.in,
Phone:+ 91-44-24913289


Qualification

Ph.D (University of Madras)

Area of Interest:
  • Solid phase organic synthesis,
  • new safety-catch linkers
  • new protective groups
  • designing cell penetrating peptides.
Areas of Specialization
  • Solid Phase Synthesis
  • Organic Synthesis
  • Antimicrobial Peptides
  • designing cell penetrating peptides.
Research Background
  • Visiting Scientist : University of Michigan, USA, 2009-10
  • Senior PDRF: Nanyang Technological University, Singapore, 2006-08
  • Scientist : Centre for Cellular and Molecular Biology, Hyderabad, 1990-97
  • UGC-CSIR NET JRF : Department of Chemistry, Bharathidasan University, Trichy, 1988-90
Research Publications
  • Publications in referred journals  : 52
  • Invited lectures in conferences   : 8
  • No. of scholars who took Ph.D.   : 3
  • No. of scholars working for Ph.D. : 3
Fellowship Details
Sep. 2009 – Aug. 2010 Visiting Scientist, University of Michigan, Ann Arbor, MI, USA
Apr. 2006 – Mar. 2008 Research Fellow, Nanyang Technological University, Singapore
Jan. 2004 – Dec. 2004 PD Research Fellow, University of Michigan, Ann Arbor, MI, USA
Nov.1988 – Jun. 1990 NET CSIR Junior Research Fellow Department of Chemistry, Bharathidasan University, Tamil Nadu, India
Employment Details
1. CLRI, Chennai Oct.2011-Present Senior Principal Scientist
2. CLRI, Chennai Oct.2005 - Sep.2011 Principal Scientist
3. CLRI, Chennai Oct.2000 - Sep.2005 Scientist Gr.IV(3)
4. CLRI, Chennai Oct.1997-Sep.2000 Scientist Gr.IV(2)
5. CCMB, Hyderabad Oct.1995-Sep.1997 Scientist Gr.IV(2)
6. CCMB, Hyderabad Oct.1990-Sep.1995 Scientist Gr.IV(1)
List of projects implemented
Project Title and Status
  1. HCP0001: CSIR-Open Source Drug Discovery (CSIR-OSDD): Synthesis of small molecules for evaluation of their antimycobacterial potential (completed).
  2. CSC0201:CSIR 12th plan project STRAIT (Work Package 2.2): Synthesis and evaluation of antifungals and antibacterials (on-going)
  3. CSC0302: CSIR 12th plan project ADD - Work Package Title: Synthesis and evaluation of anticancer peptides (on-going)
  4. BSC0120: CSIR 12th plan project BIODISCOVERY - Work Package Title: Synthesis and evaluation of therapeutic antimicrobial peptides (on-going)
Citations as on 6 September 2015 : 1245

Selected Publications

Sensors for Biological Applications

  1. Chereddy Narendra Reddy, Nagaraju Peethani, Niladri Raju M.V., Saranraj Krishnan, Rao Vaidya Jayathirtha and Thennarasu Sathiah.
    A two fluorophore embedded probe for collective and ratiometric detection of Hg2+ and Fions
    Dyes and Pigments, 2015, 112, 201-209.
  2. Chereddy Narendra Reddy, Saranraj Krishnan, Barui Ayan Kumar, Patra Chitta Ranjan, Rao Vaidya Jayathirtha and Thennarasu Sathiah
    Donor atom selective coordination of Fe3+ and Cr3+ trigger fluorophore specific emission in a rhodamine–naphthalimide dyad.
    RSC Advances, 2014, 4(46), 24324-24327.
  3. Narendra Reddy Chereddy, Purna Sai Korrapati, Sathiah Thennarasu and Asit Baran Mandal
    Tuning copper(II) ion selectivity: the role of basicity, size of the chelating ring and orientation of coordinating atoms.
    Dalton Trans., 2013, 42, 12873–12877.
  4. Narendra Reddy Chereddy, Subramanian Janakipriya, Purna Sai Korrapati, Sathiah Thennarasu, Asit Baran Mandal
    Solvent-assisted selective detection of sub-micromolar levels of Cu2+ ions in aqueous samples and live-cells.
    Analyst, 2013, 138 (4), 1130 – 1136.
  5. Narendra Reddy Chereddy, Sathiah Thennarasu, Asit Baran Mandal
    A highly selective and efficient single molecular FRET based sensor for ratiometric detection of Fe3+ ions.
    Analyst 2013, 138 (5), 1334 – 1337.
  6. Chereddy, N. R., Thennarasu, S., and Mandal, A. B.
    Incorporation of triazole into a quinoline-rhodamine conjugate imparts iron (III) selective complexation permitting detection at nano molar levels
    Dalton Trans. 2012, 41, 11753–11759.
  7. Chereddy, N. R., Thennarasu, S., and Mandal, A. B.
    A new triazole appended rhodamine chemosensor for selective detection of Cu2+ ions and live-cell imaging.
    Sensors and Actuators: B 2012, 171–172, 294-301.
  8. Chereddy, N. R., Suman, K.,  Purna Sai, K., Thennarasu, S., and Mandal, A. B.
    Design and synthesis of rhodamine based chemosensors for the detection of Fe3+ ions.
    Dyes and Pigments, 2012, 95, 606-613.
  9. Chereddy, N. R., and Thennarasu, S.
    Synthesis of a highly selective bis-rhodamine chemosensor for naked-eye detection of Cu2+ ions and its application in bio-imaging.
    Dyes and Pigments, 2011, 91, 378-382.
  10. M. Balasubramanian, S. Thennarasu, T. Sudhakaran and P. T. Perumal.
    Spectrophotometric and fluorimetric determination of hexamine in pure form and its pharmaceutical formulation.
    Biol. Pharm. Bull. 2003, 26, 1211-1214.

Synthesis of Small Molecules

  1. Suman, Koorathota, Thennarasu, Sathiah.
    Base catalysed domino and self-domino Michael–Aldol reactions: one-pot synthesis of dispirocyclopentaneoxindoles containing multiple chiral stereocenters
    RSC Advances, 2015, 5 (30), 23291-23302.
  2. Srinu Lanka, Sathiah Thennarasu, Paramasivan T. Perumal.
    Stoichiometry-controlled cycloaddition of azomethineylide with dipolarophiles: Chemoselective and regioselective synthesis of bis- and tris-spirooxindole derivatives.
    Tetrahedron letters 2014, 55, 2585-2588.
  3. Srinu Lanka, Sathiah Thennarasu, Paramasivan T. Perumal.
    An efficient regioselective synthesis of novel dispiropyrrolidine and dispiropyrrolizidine oxindole derivatives via azomethine ylide specific cycloaddition with alkyl indeno[1,2-b]quinoxalin-11-ylidene acetate dipolarophiles.
    RSC Advances, 2014, 4, 2263-2266.
  4. Suman K; Srinu L; Thennarasu S.
    Lewis acid catalyzed unprecedented [3 + 2] cycloaddition yields 3,3'-pyrrolidinyldispirooxindoles containing four contiguous chiral stereocenters with two contiguous quaternary spirostereocenters.
    Org Lett. 2014 16(14):3732-5.
  5. Periasamy Selvakumar, Sathiah Thennarasu, and Asit Baran Mandal.
    Synthesis of Novel Pyridopyridazin-3(2H)-one Derivatives and Evaluation of Their Cytotoxic Activity against MCF-7 Cells.
    ISRN Medicinal Chemistry 2014, Vol. 2014, Article ID 410716, 7 pages.
  6. Rathnasamy Rishikesan, Kamalakannan Prabakaran, Rajamani Murugesan, Ramaswamy Venkataraman, Pakkath Karuvalam Ranjith, Sivasubramanian Arvind and Sathiah Thennarasu
    18-Crown-6 Catalyzed Microwave-mediated Synthesis of Symmetric Bis-Heterocyclic Compounds under Solvent-free Condition
    J. Heterocyclic Chem., 2014, doi: 10.1002/jhet.2162.
  7. Srinu Lanka, Sathiah Thennarasu, Paramasivan T. Perumal.
    Facile synthesis of novel dispiroheterocylic derivatives through cycloaddition of azomethine ylides with acenaphthenone-2-ylidine ketones
    Tetrahedron Lett. 2012, 53, 7052–7055.

Solid-Phase Peptide Synthesis

  1. Thennarasu, S., and Liu, C-F.
    A new safety-catch protecting group and linker for solid-phase synthesis.
    Tetrahedron Lett. 2010, 51, 3218–3220.
  2. M. Renil, V. N. R. Pillai, S. Thennarasu, and R. Nagaraj.
    Solid phase peptide synthesis using a new PS-TTEGDA resin: Synthesis of pardaxin (1-26).
    Indian J. Chem. Sec. B, 1999, 38(9), 1030-1035.
  3. G. Saberwall, S. Thennarasu, V. M. Dhople, M. V. Jeganatham and R. Nagaraj.
    Studies on the synthesis of toxins, pardaxin, d-toxin and their analogues by solid-phase methods.
    Proc. Indian Acad. Sci.  (Chem. Sci.) 1994, 106, 1109-1121.

Antimicrobial Peptides

  1. Thennarasu, S., Huang, R., Lee, D-K., Yang, P., Maloy, L., Chen, Z., and Ramamoorthy, A.
    Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367.
    Biochemistry, 2010, 49, 10595-605.
  2. Thennarasu, S., Tan, A., Penumatchu, R., Shelburne, C. E., Heyl, D. L., and Ramamoorthy, A.
    Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37.
    Biophys. J. 2010, 98, 248-257.
  3. S. Thennarasu, D-K Lee, A. Tan, Lee Maloy and A. Ramamoorthy.
    Solid-State NMR Investigation of the Membrane-Disrupting Mechanism of Antimicrobial Peptides MSI-78 and MSI-594 Derived From Magainin 2 and Melittin
    Biophys. J. 2006, 91, 206-216.
  4. A. Ramamoorthy, S. Thennarasu, A. Tan, D-K Lee, C. Clayberger and A. M. Krensky
    Cell selectivity correlates with membrane specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin
    Biochim. Biophys. Acta- Biomembranes 2006, 1758, 154-163.
  5. A. Ramamoorthy, S. Thennarasu, A. Tan, D-K Lee, K. Gottipati, S.  Sreekumar, D. Heyl, Florence An and C. Shelburne
    Deletion of All Cysteines in Tachyplesin I Abolishes Hemolytic Activity and Retains Antimicrobial Activity and Lipopolysaccharide Selective Binding
    Biochemistry, 2006, 45, 6529-6540.
  6. F. Porcelli, B. Buck-Koehntop, S. Thennarasu, A. Ramamoorthy, and G. Veglia
    Structures of the Dimeric and Monomeric Variants of Magainin Antimicrobial Peptides (MSI-78 and MSI-594) in Micelles and Bilayers, Determined by NMR Spectroscopy
    Biochemistry, 2006, 45, 5793-5799.
  7. Thennarasu S, Lee DK, Poon A, Kawulka KE, Vederas JC, Ramamoorthy A
    Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A
    Chem Phys Lipids. 2005, 137(1-2), 38-51.
  8. Thennarasu S, Lee DK, Tan A, Prasad Kari U, Ramamoorthy A
    Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843.
    Biochim Biophys Acta. 2005, 1711(1), 49-58.
  9. Thennarasu, S; Nagaraj, R
    Effects of salt and denaturant on structure of the amino terminal alpha-helical segment of an antibacterial peptide dermaseptin and its binding to model membranes
    Indian J Biochem. Biophys., 2001, 38(3), 142-148.
  10. Thennarasu, S; Nagaraj, R.
    Synthetic peptides corresponding to the beta-hairpin loop of rabbit defensin NP-2 show antimicrobial activity
    Biochem. Biophys. Res. Commun., 1999, 254(2), 281-283.
  11. Thennarasu, S; Nagaraj, R.
    Solution conformations of peptides representing the sequence of the toxin pardaxin and analogs in trifluoroethanol-water mixtures - analysis of cd spectra.
    Biopolymers, 1997, 41(6), 635-645.
  12. Thennarasu, S; Nagaraj, R
    Specific antimicrobial and hemolytic activities of 18-residue peptides derived from the amino-terminal region of the toxin pardaxin.
    Protein Engineering, 1996, 9(12), 1219-1224.
  13. Thennarasu, S; Nagaraj, R.
    Design of 16-residue peptides possessing antimicrobial and hemolytic activities or only antimicrobial activity from an inactive peptide.
    International Journal of Peptide & Protein Research, 1995, 46(6), 480-486.
List of Publications
Chemosensors
  1. Synthesis of a highly selective bis-rhodamine chemosensor for naked-eye detection of Cu2+ions and its application in bio-imaging. N. R. Chereddy, and S. Thennarasu. Dyes and Pigments, 2011, 91, 378-382.

  2. Incorporation of triazole into a quinoline-rhodamine conjugate imparts iron (III) selective complexation permitting detection at nanomolar levels. N. R. Chereddy, S. Thennarasu and A. B. Mandal. Dalton Transactions, 2011,41 (38), 11753-11759.

  3. Design and synthesis of rhodamine based chemosensors for the detection of Fe3+ ions. N. R. Chereddy, K. Suman,
    K. Purnasai, S. Thennarasu, and A. B. Mandal. Dyes and Pigments, 2012, 95 (3), 606-613.

  4. A Photo-Induced Electron Transfer Based Chemosensor for the Selective Detection of Zn2+ Ions. N. R. Chereddy,
    S. Thennarasu and A. B. Mandal. Biochem Anal Biochem, 2012, 1 (126), 2161-1009.1000.

  5. A new triazole appended rhodamine chemosensor for selective detection of Cu2+ ions and live-cell imaging.
    N. R. Chereddy, S. Thennarasu and A. B. Mandal. Sensors and Actuators B: Chemical, 2012, 171, 294-301.

  6. A highly selective and efficient single molecular FRET based sensor for ratiometric detection of Fe3+ ions. N. R. Chereddy,
    S. Thennarasu and A. B. Mandal. Analyst, 2013, 138 (5), 1334-1337.

  7. Solvent-assisted selective detection of sub-micromolar levels of Cu2+ ions in aqueous samples and live-cells. N. R. Chereddy,  S. Thennarasu and A. B. Mandal. Analyst, 2013, 138 (4), 1130-1136.

  8. Tuning copper (II) ion selectivity: The role of basicity, size of the chelating ring and orientation of coordinating atoms. N. R. Chereddy, S. Thennarasu and A. B. Mandal. Dalton Transactions, 42 (36), 2013, 12873-12877.

  9. Donor atom selective coordination of Fe 3+ and Cr3+ trigger fluorophore specific emission in a rhodamine–naphthalimide dyad. N.R. Chereddy, K. Saranraj, A.K. Barui, C.R. Patra, V.J. Rao, S Thennarasu. RSC Advances, 2014, 4 (46), 24324-24327.

  10. A two fluorophore embedded probe for collective and ratiometric detection of Hg 2+ and F- ions. N.R. Chereddy, P. Nagaraju, M.V.N. Raju, K. Saranraj, S Thennarasu, V.J. Rao. Dyes and Pigments, 2015, 112, 201-209.

  11. Selective interactions of trivalent cations Fe3+, Al3+ and Cr3+ turn on fluorescence in a naphthalimide based single molecular probe. S. Janakipriya, N. R. Chereddy, K. Purnasai, S. Thennarasu and A. B. Mandal. Spectrochim. Acta A; Molecular and Biomolecular Spectroscopy, 2016, 153, 465-470.

  12. Spectrophotometric and fluorimetric determination of hexamine in pure form and its pharmaceutical formulation. M. Balasubramanian, S. Thennarasu, T. Sudhakaran and P. T. Perumal. Biol. Pharm. Bull., 2003, 26, 1211-1214.

  13. Spectrophotometric spectrofluorimetric and high performance liquid chromatographic methods for the determination of hexamine in tablets. M. Balasubramanian, S. Thennarasu, A. B. Mandal and P. T. Perumal. Indian J. Pharm. Sci. 2003, 65, 643-645.

  14. Spectrophotometric determination of hexamine in hiprex using ninhydrin reagent. M.Balasubramanian,
    S. Thennarasu, and P.T.Perumal.  Oriental. J. Chem., 2002, 18, 207.

Synthesis of small molecules
  1. Facile synthesis of novel dispiroheterocylic derivatives through cycloaddition of azomethine ylides with acenaphthenone-2-ylidine ketones. Srinu Lanka, Sathiah Thennarasu, Paramasivan T. Perumal. Tetrahedron Lett., 2012, 53, 7052–7055.

  2. 18-Crown-6 Catalyzed Microwave-mediated Synthesis of Symmetric Bis-Heterocyclic Compounds under Solvent-free Condition. Rathnasamy Rishikesan, Kamalakannan Prabakaran, Rajamani Murugesan, Ramaswamy Venkataraman, Pakkath Karuvalam Ranjith, Sivasubramanian Arvind and Sathiah Thennarasu. J. Heterocyclic Chem., 2015, 52(5), 1321–1330.

  3.  Synthesis of Novel Pyridopyridazin-3(2H)-one Derivatives and Evaluation of Their Cytotoxic Activity against MCF-7 Cells. Periasamy Selvakumar, Sathiah Thennarasu, and Asit Baran Mandal. ISRN Medicinal Chemistry, 2014, Vol. 2014, Article ID 410716.

  4. Lewis acid catalyzed unprecedented [3 + 2] cycloaddition yields 3,3'-pyrrolidinyldispirooxindoles containing four contiguous chiral stereocenters with two contiguous quaternary spirostereocenters. Suman K; Srinu L; Thennarasu S. Org Lett., 2014, 16(14):3732-3735.

  5. An efficient regioselective synthesis of novel dispiropyrrolidine and dispiropyrrolizidine oxindole derivatives via azomethine ylide specific cycloaddition with alkyl indeno[1,2-b]quinoxalin-11-ylidene acetate dipolarophiles. Srinu Lanka, Sathiah Thennarasu, Paramasivan T. Perumal. RSC Advances, 2014, 4, 2263-2266.

  6. Stoichiometry-controlled cycloaddition of azomethineylide with dipolarophiles: Chemoselective and regioselective synthesis of bis- and tris-spirooxindole derivatives. Srinu Lanka, Sathiah Thennarasu, Paramasivan T. Perumal. Tetrahedron letters, 2014, 55, 2585-2588.

  7. Base catalysed domino and self-domino Michael–Aldol reactions: one-pot synthesis of dispirocyclopentaneoxindoles containing multiple chiral stereocenters. Suman, Koorathota; Thennarasu, Sathiah. RSC Advances, 2015, 5, 23291-23302.

  8.  Acetic acid promoted tandem cyclization of in situ generated 1,3-dipoles: stereoselective synthesis ofdispiroimidazolidinyl and dispiropyrrolidinyl oxindoles with multiple chiral stereocenters. Suman, Koorathota; Thennarasu, Sathiah. RSC Advances, 2015, 5, 79413–79422.

  9.  An Efficient Preparation of 1,2-Diamino-1-phenylheptane. S. Thennarasu and P. T. Perumal. Molecules, 2002, 7, 487-493.

  10. Synthesis of new hydantoins as intermediates for diamino acids. S. Thennarasu and P. T. Perumal. Indian J. Chem. 2001, 40B, 1174-1176.
Bioactive Peptides
  1. Design of 16-residue peptides possessing antimicrobial and hemolytic activities or only antimicrobial activity from an inactive peptide. S.Thennarasu and R. Nagaraj.
    Int. J. Pept. Protein Res. 1995, 46, 480-486.

  2. Specific antimicrobial and hemolytic activities of 18-residue peptides derived from the amino terminal region of the toxin pardaxin. S.Thennarasu and R. Nagaraj.
    Protein Eng. 1996, 9, 1219-1224.

  3. Granulocytes from chronic myeloid leukemia (CML) patients show differential response to different chemoattractants. V. Radhika, S. Thennarasu, N. R. Naik, A. Kumar, S. H. Advani and A. N. Bhisey. Am. J. Hematol. 1996, 52, 155-164.

  4. Solution conformations of peptides representing the sequence of the toxin pardaxin and analogues in trifluoroethanol-water mixtures: analysis of CD spectra. S.Thennarasu and R. Nagaraj. Biopolymers. 1997, 41, 635-645.

  5. Synthetic peptides corresponding to the beta-hairpin loop of rabbit defensin NP-2 show antimicrobial activity. S.Thennarasu and R. Nagaraj. Biochem Biophys Res Commun. 1999, 254, 281-283.

  6. Effects of salt and denaturant on structure of the amino terminal alpha-helical segment of an antibacterial peptide dermaseptin and its binding to model membranes. S.Thennarasu and R. Nagaraj. Indian J Biochem. Biophys. 2001, 38, 142-148.

  7. Antimicrobial Activity and Membrane Selective Interactions of a Synthetic Lipopeptide MSI-843. S.  Thennarasu, D-K. Lee, A. Tan, U. Prasad Kari and A. Ramamoorthy.
    Biochim. Biophys. Acta-Biomembranes  2005, 1711, 49-58.

  8. Membrane permeabilization, orientation and antimicrobial mechanism of subtilosin A. S. Thennarasu, D-K. Lee, A. Poon, K. E. Kawulka, J. C. Vedaras and A. Ramamoorthy.
    Chem. Phys. Lipids 2005, 137, 38-51.

  9. Structures of the Dimeric and Monomeric Variants of Magainin Antimicrobial Peptides (MSI-78 and MSI-594) in Micelles and Bilayers, Determined by NMR Spectroscopy. F. Porcelli, B. Buck-Koehntop, S. Thennarasu, A. Ramamoorthy, and G. Veglia.
    Biochemistry, 2006, 45, 5793-5799.

  10. Solid-State NMR Investigation of the Membrane-Disrupting Mechanism of Antimicrobial Peptides MSI-78 and MSI-594 Derived From Magainin 2 and Melittin. S. Thennarasu, D-K Lee, A. Tan, Lee Maloy and A. Ramamoorthy. Biophys. J. 2006, 91, 206-216.

  11. Cell selectivity correlates with membrane specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin. A. Ramamoorthy, S. Thennarasu, A. Tan, D-K Lee, C. Clayberger and A. M. Krensky. Biochim. Biophys. Acta- Biomembranes 2006, 1758, 154-163.

  12. Deletion of All Cysteines in Tachyplesin I Abolishes Hemolytic Activity and Retains Antimicrobial Activity and Lipopolysaccharide Selective Binding. A. Ramamoorthy, S. Thennarasu, A. Tan, D-K Lee, K. Gottipati, S. Sreekumar, D. Heyl, Florence An and C. Shelburne. Biochemistry, 2006, 45, 6529-6540.

  13. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Thennarasu, S., Tan, A., Penumatchu, R., Shelburne, C. E., Heyl, D. L., and Ramamoorthy, A. Biophys. J. 2010, 98, 248-257.

  14. Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367. Thennarasu, S., Huang, R., Lee, D-K., Yang, P., Maloy, L., Chen, Z., and Ramamoorthy, A.  Biochemistry 2010, 49, 10595-10605.
Solid Phase Peptide Synthesis
  1. A new safety-catch protecting group and linker for solid-phase synthesis. Thennarasu, S., and Liu Chuan-Fa. Tetrahedron Lett. 2010, 51, 3218–3220.

  2. Solid-phase synthesis using a new PS-TTEGDA resin: Synthesis of pardaxin(1-26). M. Renil, V. N. Rajasekaran Pillai,
    S. Thennarasu and R. Nagaraj. Indian J. Chem. 1999, 38B, 1030-1035.

  3. Studies on the synthesis of toxins, pardaxin, d-toxin and their analogues by solid-phase methods. G. Saberwall,
    S. Thennarasu, V. M. Dhople, M. V. Jeganatham and R. Nagaraj. Proc. Indian Acad. Sci. (Chem. Sci.), 1994, 106, 1109-1121.
Material Characterization
  1. Developments and applications of cyanoacrylate adhesives. K. L. Shantha, S. Thennarasu and N. Krishnamurti. J. Adhesion Sci. Technol. 1989, 3, 237-260.

  2. Self-assembling characteristics of 5-(-acetamido-benzyl)methyl-5'-methyl imidazolidine-2,4-dione – A hydantoin drug.
    S. G. Krishnan, S. Thennarasu and A. B. Mandal. Chemical Physics, 2003, 291, 195-205.

  3. Self-assembling characteristics of a new gemini surfactant. S. G. Krishnan, S. Thennarasu and A. B. Mandal.
    J. Phys. Chem. B, 2004, 108, 8806-8816.

  4.  Two-dimensional surface properties of an antimicrobial hydantoin at the air-water interface: An experimental and theoretical study. Mandal, A., Krishnan, R.S.G. ., Thennarasu, S., Panigrahi, S., and Mandal, A. B. Colloids Surf. B: Biointerfaces. 2010, 79, 136-141.

  5. Thermodynamic studies on tyrosine-hydantoin drug–cetyltrimethylammonium bromide mixed micellar system. Tiwary, L. K., Mandal, A., Alam, Md. S.,  Thennarasu, S., and Mandal, A. B. Colloids Surf. B: Biointerfaces 2011, 82, 126–133.

  6. Resveratrol stabilized gold nanoparticles enable surface loading of doxorubicin and anticancer activity. Mohanty R. K.; Thennarasu S; Mandal A. B. Colloids Surf B Biointerfaces 2014, 114:138-43.

  7. S. Thennarasu and P. T. Perumal “5-(1-Acetamido) benzyl-5-methyl Imidazolidin-2,4- dione”, Molbank, 2003, M326.

Structural (Collaborative) Studies
  1. 5-(1-Acet­amido-3-methyl­butyl)-5-methyl­imidazolidine-2,4-dione monohydrate.
    K. SethuSankar, S. Thennarasu, D. Velmurugan, S. Shanmuga Sundara Raj, H.-K. Fun and P. T. Perumal Acta Cryst. 2001, E57, o377.

  2. 5-[Acetamido(phenyl)methyl]-5-methylimidazolidine-2,4-dione. K SethuSankar; S Thennarasu; Devadasan Velmurugan; Moon Jib-Kim. Acta crystallographica. Section C, Crystal structure communications 2002; 58:o715.

  3. N-[1-(5-Acetamido-3-acetyl-2-methyl-2,3-dihydro-1,3,4-thia­diazol-2-yl)-2-phenyl­ethyl]acetamide. Sakthivel, P., Joseph,P. S., Muthiah, P. T., Sethusankar, K., and Thennarasu, S. ActaCrystallogr. Sect. E 2008, 64, o216.

  4. Ethyl 2-(7-oxo-3,5-diphenyl-1,4-diaze-pan-2-yl)acetate. Jagadeesan, G., Sethusankar, K., Selvakumar, P., Thennarasu, S.,  and Mandal, A. B. Acta Cryst. E 2012, E68, o1034.

  5. Ethyl 7-oxo-3,5-diphenyl-1,4-diazepane-2-carboxyl-ate. Jagadeesan, G., Sethusankar, K.,Selvakumar, P., Thennarasu, S.,  and Mandal, A. B.. Acta Cryst. E 2012, E68, o1525.

  6. N-tert-Butyl-2-[4-(dimethyl-amino)-phen-yl]imidazo[1,2-a]pyrazin-3-amine. Fatima Z; Srinivasan T; Koorathota S; Thennarasu S; Velmurugan D; Acta Crystallogr Sect E Struct Rep Online 2013 Apr 1;69:o612.

  7. N-tert-Butyl-2-(2,6-di-chloro-phen-yl)imidazo[1,2-a]pyrazin-3-amine. Fatima Z; Srinivasan T; Koorathota S; Thennarasu S; Velmurugan D;  Acta Crystallogr Sect E Struct Rep Online 2013 Jun 1;69:o949.

  8. Ethyl 1''-benzyl-2''-oxo-2', 3', 5', 6', 7', 7a'-hexahydro-1'H-dispiro [indeno [1, 2-b] quinoxaline-11, 2'-pyrrolizine-3', 3''-indoline]-1'-carboxylate monohydrate. Piskala Subburaman Kannan, Srinu Lanka, Sathiah Thennarasu, Gopal Vimala, Arunachalathevar SubbiahPandi. Acta Cryst. 2013,  E69, o854.

  9. Ethyl 1''-benzyl-1'-methyl-2''-oxodispiro [indeno [1, 2-b] quinoxaline-11, 3'-pyrrolidine -2', 3''-indoline]-4'-carboxylate. Piskala Subburaman Kannan, Srinu Lanka, Sathiah Thennarasu, Elumalai Govindan, Arunachalathevar SubbiahPandi. Acta Cryst. 2013, E69, o822.

  10. Ethyl 8''-chloro-1'-methyl-2,12''-dioxo-12''H-dispiro[indoline-3,2'-pyrrolidine- 3',6''-indolo[2,1-b]quinazoline]-4'-carboxylate.Piskala Subburaman Kannan, Srinu Lanka, Sathiah Thennarasu, E. Govindan , Arunachalathevar Subbiah Pandi. Acta Cryst. 2013, E69, o1062.